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NOtEsIntroduction
In his visionary review of 1979, Francis Crick 
suggested that a major goal of neuroscience is to 
identify “which features (of the brain) it would be 
most useful to study and in particular to measure” 
(Crick, 1979). To identify and perturb these features 
in a productive way, it would be necessary to invent a 
method “by which all neurons of just one type could be 
inactivated, leaving the others more or less unaltered” 
[emphasis mine] (Crick, 1979). Sometime later, 
he expanded this wish list to include the ability 
“to turn the firing of one or more types of neuron 
on and off in the alert animal in a rapid manner” 
(Crick, 1999). The idea Crick proposed, then, was 
that in order to begin to construct a wiring diagram 
of neuronal circuits involved in regulating particular 
behaviors, there was a pressing need for a way to 
reversibly regulate neuronal activity in a cell-type-
specific manner.

During the past 10 years, a number of technologies 
have been developed to achieve the cell-type-specific 
and reversible modulation of neuronal activity he 
envisioned. These include the following:

•	Light-activated	 channels	 for	 activating	 (Nagel	
et al., 2002, 2003, 2005; Boyden et al., 2005) 
and silencing (Li et al., 2005; Zhang et al., 2007) 
neurons;

•	Photochemical	activation	of	neurons	 (Zemelman	
et al., 2002, 2003; Kokel et al., 2013);

•	Chemogenetic	 or	 pharmacogenetic	 activation	
of neurons via engineered receptor–ligand pairs 
(Alexander et al., 2009); and

•	Chemogenetic	or	pharmacogenetic	inactivation	of	
neurons via insect receptor–ligand pairs (Lechner 
et al., 2002) or engineered receptor–ligand pairs 
(Armbruster et al., 2007).

In a similar way, in order to understand how 
signaling processes in neuronal and nonneuronal 
cells regulate behavior, we will need tools that allow 
for precise spatiotemporal control of neuronal and 
nonneuronal signaling in a reversible, temporally 
controllable fashion. Thus, the aim of this research is 
to insert engineered receptors into specific neuronal 
populations and then to activate or inactivate them 
to discover how signaling processes regulate behavior 
in freely moving animals (Fig. 1).
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Figure 1. “Thought experiments” for using engineered GPCRs inserted into specific cells to interrogate signaling processes 
essential for behavior. Ideally, by inserting an engineered Gi-coupled receptor into cortical neurons via the Cre-Lox system, 
one can induce a behavior reminiscent of that induced by the κ-opioid–selective ligand salvinorin A. CNO, clozapine-N-
oxide; Sal A, salvinorin A.
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Activating G-Protein Coupled 
Receptors
During the past 20 or more years, a number of 
tools have been developed that allow for the 
reversible activation of G-protein coupled receptors 
(GPCRs) (Table 1) (Conklin et al., 2008; Rogan 
and Roth, 2011). These have been various dubbed 

“allele-specific genetically engineered receptors” 
(Strader et al., 1991); “receptors activated solely by 
synthetic ligands” (RASSLs) (Coward et al., 1998); 
“engineered receptors” (Westkaemper et al., 1999); 
“therapeutic receptor–effector complexes” (TREKs) 
(Small et al., 2001); “neoceptors” (Jacobson et al., 
2001); and “designer receptors exclusively activated 
by designer drugs” (DREADD) (Armbruster et al., 
2007). Among these variations on the theme of 
engineered GPCR–ligand pairs, DREADDs have 
emerged as the most frequently used tool for remotely 
controlling neuronal signaling. This chapter focuses 
on the specific application of DREADD technology.

Designer Receptors Exclusively 
Activated by Designer Drugs—
DREADDs
DREADDs were originally invented by modifying 
muscarinic acetylcholine receptors to be activated by 
the inert ligand clozapine-N-oxide (CNO) via directed 
molecular evolution in genetically engineered yeast 
(Armbruster et al., 2007). In the process, two-point 
mutations of highly conserved amino acids (Y3.33C and 
A5.46G via the Ballesteros and Weinstein numbering 
convention; Ballesteros and Weinstein, 1995) rendered 
all 5 human muscarinic receptors both unable to be 
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Technology Receptor Ligand (s) Outcome Reference

Allele-specific control 
of GPCR signaling via 
engineered β-adrenergic 
receptor–ligand pair

β2-adrenergic receptor 
Asp113->Ser113 mutant

1-(3',4'-dihydroxyphenyl)-
3-methyl-L-butanone 
(L-185,870)

Reversible activation of Gs 
canonical signaling

Strader et al., 1991

RASSL–Gi (receptors 
activated solely by 
synthetic ligands)

κ-opioid chimeric receptor Spiradoline (small-
molecule κ-opioid agonist)

Reversible activation of 
canonical Gi signaling

Coward et al., 1998

Engineered receptor–
ligand pairs to reversibly 
inactivate signaling

5-HT2A serotonin receptor 
Phe340->Leu340 mutant 
receptor

Inactive ketanserin 
analogues

Reversible inhibition of Gq 
signaling

Westkaemper et al., 1999

TREK (therapeutic 
receptor–effector 
complex) β-adrenergic 
receptor mutant

Extensive modifications of 
β2-adrenergic receptor

L-158,870 Reversible Gs activation Small et al., 2001

Neoceptors Engineered adenosine 
receptors

Inactive adenosine 
receptor ligands

Reversible activation 
of canonical adenosine 
signaling

Jacobson et al., 2001

RASSL-Gs Melanocortin-4 receptor 
mutants

Small-molecule MC4 
agonists

Reversible activation of Gs 
signaling

Srinivasan et al., 2003

Gi and Gq-DREADD M1, M2, M3, M4, M5-
muscarinic receptor 
mutants

Inactive clozapine 
metabolite clozapine-N-
oxide (CNO)

Reversible activation of Gi 
or Gq signaling

Armbruster et al., 2007

Gs-DREADD Engineered M3-muscarinic 
receptor 

Inactive clozapine 
metabolite CNO

Reversible activation of Gs 
signaling 

Guettier et al., 2009

Arrestin-DREADD Engineered M3-muscarinic 
receptor

Inactive clozapine 
metabolite CNO

Reversible activation of 
arrestin signaling

Nakajima and Wess, 2012

Table 1. Representative chemogenetic technologies for the remote control of cellular signaling

Figure 2. Point mutations essential for creation of DREADD 
receptors. Shown are the locations of the two-point mutations 
(Y149C(3.33), A239G(5.46)) that are conserved residues within 
all acetylcholine muscarinic receptors, including Drosophila.
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activated by acetylcholine (their endogenous agonist) 
and exquisitely sensitive to CNO (Fig. 2).

To date, DREADDs suitable for remotely activating 
the designer receptors Gi (e.g., hM4Gi) (Armbruster et 
al., 2007), Gq (e.g., hM3Gq) (Armbruster et al., 2007), 
Gs (e.g., GsD) (Guettier et al., 2009) and arrestin (e.g., 
Arr-DREADD) (Nakajima and Wess, 2012) signaling 
have been reported. These are activated using the 
pharmacologically inactive compound and clozapine 
metabolite CNO and have been extensively validated 
(Table 1). In all neuron types reported to date:

•	Activation	of	the	hM3Dq by CNO induces neuronal 
depolarization and burst firing (Alexander et al., 
2009; Krashes et al., 2011; Atasoy et al., 2012);

•	Activation	 of	 hM4Di by CNO induces neuronal 
hyperpolarization and silencing (Armbruster et al., 
2007; Krashes et al., 2011; Atasoy et al., 2012);

•	Activation	of	GsD by CNO enhances neuronal Gs 
signaling (Brancaccio et al., 2013; Farrell et al., 
2013); and

•	CNO	has	no	effect	on	baseline	firing	(Alexander	et	
al., 2009; Krashes et al., 2011; Atasoy et al., 2012) 
or signaling in neurons not expressing DREADDs 
(Brancaccio et al., 2013; Farrell et al., 2013).

(There have been no reports on the utility of the 
arrestin-specific DREADD for remotely controlling 
neuronal arrestin signaling.)

The mechanism(s) responsible for these alterations 
in neuronal activity are unknown. However, the 
hyperpolarization of neurons and inhibition of firing 
by hM4Di is likely caused in part by the activation 
of G-protein inwardly rectifying potassium channels 
(Armbruster et al., 2007). To date, a large number 
of investigators have reported success in using 

DREADD technology to selectively modulate 
neuronal signaling and firing (Table 2).

Pros and Cons of DREADD 
Technology
DREADDs are now widely used in neuroscience to 
remotely control neuronal signaling. DREADDs 
offer the following advantages over other, more 
invasive technologies such as optogenetics:

•	They	 are	 able	 to	 noninvasively	 control	 neuronal	
and nonneuronal signaling, as CNO can be 
administered peripherally via injection (Alexander 
et al., 2009) or through drinking water (D.J. 
Urban and B.L. Roth, unpublished observations) 
(protocols available at http://dreadd.org/);

•	They	can	modulate	signaling	and	activity	of	widely	
dispersed neurons (Garner et al., 2012);

•	They	can	modulate	signaling	and	activity	of	optically	
inaccessible neurons (Vrontou et al., 2013);

•	They	can	be	used	to	modulate	activity	of	neurons	
early in development in a noninvasive manner 
(Kozorovitskiy et al., 2012);

•	They	 are	 appropriate	 for	 long-term	 studies	 (e.g.,	
days to weeks) (Farrell et al., 2013); and

•	CNO-modulated	 activity	 can	 last	 hours	 after	 a	
single injection (Alexander et al., 2009).

The main disadvantage DREADD technology as 
compared with optical technologies is the lack of 
precise, millisecond control of activity. Although it 
is likely that “caging” CNO is possible (B.L. Roth, 
unpublished observations) so that millisecond control 
can be achieved by photochemically uncaging CNO, 
optical technologies will likely remain the most 
useful under conditions in which precise millisecond 
control of neuronal activity is needed.

Remote Control of Cellular Signaling Using DREADD Technology

Table 2. Representative experiments using DREADDs to modulate behavior by remote cell-type-specific control of neuronal signaling

DREADD Experiment Result References

hM3Dq +/– hM4Di Remote control of feeding Identification of neurons that 
encode hunger

Krashes et al., 2011; Atasoy et 
al., 2012

hM3Dq Generation of a synthetic memory 
trace

Memory encoded sparsely Garner et al., 2012

hM4Di Alteration in neuronal plasticity Altered striatal connectivity Kozorovitskiy et al., 2012

hM4Di 5-HT neuron silencing Behavior and physiological 
consequences

Ray et al., 2011

hM3Dq Identification of neurons 
responsible for pleasurable 
sensation

DRG neurons identified as target 
of MGPR4 orphan receptor

Vrontou et al., 2013

GsD Modulation of cAMP Modulates circadian clock Brancaccio et al., 2013
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NOtEs Summary
DREADD technology has emerged as a facile 
approach for remotely and noninvasively controlling 
neuronal and nonneuronal signaling. CNO-induced 
activation of hM3Dq triggers neuronal burst firing 
and, accordingly, hM3Dq is frequently used to 
remotely activate neurons. The activation of hM4Di 
by CNO can silence neurons and, accordingly, hM4Di 

is frequently used to remotely inactive neuronal 
activity. The development of additional DREADDs, 
as well as DREADDs that selectively activate distinct 
downstream effectors, will greatly expand our ability 
to remotely control and interrogate neuronal 
signaling in both health and disease.
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