Remote Control of Cellular Signaling Using DREADD Technology

Bryan L. Roth MD, PhD

Department of Pharmacology University of North Carolina Chapel Hill Medical School Chapel Hill, North Carolina

Introduction

In his visionary review of 1979, Francis Crick suggested that a major goal of neuroscience is to identify "which features (of the brain) it would be most useful to study and in particular to measure" (Crick, 1979). To identify and perturb these features in a productive way, it would be necessary to invent a method "by which all neurons of just one type could be inactivated, leaving the others more or less unaltered" [emphasis mine] (Crick, 1979). Sometime later, he expanded this wish list to include the ability "to turn the firing of one or more types of neuron on and off in the alert animal in a rapid manner" (Crick, 1999). The idea Crick proposed, then, was that in order to begin to construct a wiring diagram of neuronal circuits involved in regulating particular behaviors, there was a pressing need for a way to reversibly regulate neuronal activity in a cell-typespecific manner.

During the past 10 years, a number of technologies have been developed to achieve the cell-type-specific and reversible modulation of neuronal activity he envisioned. These include the following:

- Light-activated channels for activating (Nagel et al., 2002, 2003, 2005; Boyden et al., 2005) and silencing (Li et al., 2005; Zhang et al., 2007) neurons;
- Photochemical activation of neurons (Zemelman et al., 2002, 2003; Kokel et al., 2013);
- Chemogenetic or pharmacogenetic activation of neurons via engineered receptor–ligand pairs (Alexander et al., 2009); and
- Chemogenetic or pharmacogenetic inactivation of neurons via insect receptor–ligand pairs (Lechner et al., 2002) or engineered receptor–ligand pairs (Armbruster et al., 2007).

In a similar way, in order to understand how signaling processes in neuronal and nonneuronal cells regulate behavior, we will need tools that allow for precise spatiotemporal control of neuronal and nonneuronal signaling in a reversible, temporally controllable fashion. Thus, the aim of this research is to insert engineered receptors into specific neuronal populations and then to activate or inactivate them to discover how signaling processes regulate behavior in freely moving animals (Fig. 1).

Thought experiment Part A: create receptor which can be activated by inert ligand

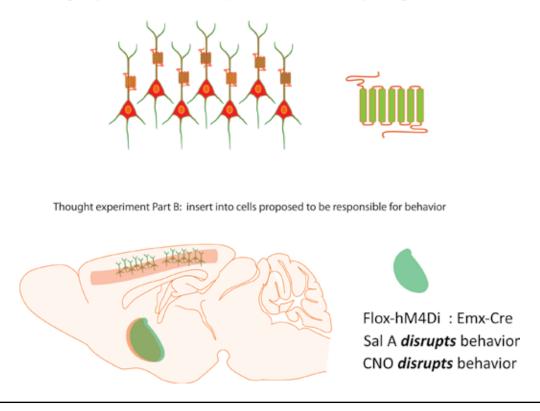


Figure 1. "Thought experiments" for using engineered GPCRs inserted into specific cells to interrogate signaling processes essential for behavior. Ideally, by inserting an engineered G_i -coupled receptor into cortical neurons via the Cre-Lox system, one can induce a behavior reminiscent of that induced by the κ -opioid–selective ligand salvinorin A. CNO, clozapine-*N*-oxide; Sal A, salvinorin A.

NOTES

NOTES

Table 1. Representative chemogenetic technologies for the remote control of cellular signaling

Technology		Ligand (s)	Outcome	Reference
Allele-specific control of GPCR signaling via engineered β-adrenergic receptor–ligand pair	$\beta 2\text{-}adrenergic receptor} Asp^{113}\text{-}>Ser^{113}$ mutant	1-(3',4'-dihydroxyphenyl)- 3-methyl-L-butanone (L-185,870)	Reversible activation of $\rm G_{s}$ canonical signaling	Strader et al., 1991
RASSL-G _i (receptors activated solely by synthetic ligands)	$\kappa\text{-opioid}$ chimeric receptor	Spiradoline (small- molecule ĸ-opioid agonist)	Reversible activation of canonical \mathbf{G}_{i} signaling	Coward et al., 1998
Engineered receptor- ligand pairs to reversibly inactivate signaling	5-HT _{2A} serotonin receptor Phe ³⁴⁰ ->Leu ³⁴⁰ mutant receptor	Inactive ketanserin analogues	Reversible inhibition of $\mathbf{G}_{\mathbf{q}}$ signaling	Westkaemper et al., 1999
TREK (therapeutic receptor–effector complex) β-adrenergic receptor mutant	Extensive modifications of β 2-adrenergic receptor	L-158,870	Reversible ${\rm G}_{\rm s}$ activation	Small et al., 2001
Neoceptors	Engineered adenosine receptors	Inactive adenosine receptor ligands	Reversible activation of canonical adenosine signaling	Jacobson et al., 2001
RASSL-G _s	Melanocortin-4 receptor mutants	Small-molecule MC4 agonists	Reversible activation of $\rm G_{s}$ signaling	Srinivasan et al., 2003
\mathbf{G}_{i} and $\mathbf{G}_{q}\text{-}\mathbf{DREADD}$	M ₁ , M ₂ , M ₃ , M ₄ , M ₅ - muscarinic receptor mutants	Inactive clozapine metabolite clozapine- <i>N</i> - oxide (CNO)	Reversible activation of \mathbf{G}_{i} or \mathbf{G}_{q} signaling	Armbruster et al., 2007
G _s -DREADD	Engineered M ₃ -muscarinic receptor	Inactive clozapine metabolite CNO	Reversible activation of $\rm G_{s}$ signaling	Guettier et al., 2009
Arrestin-DREADD	Engineered M ₃ -muscarinic receptor	Inactive clozapine metabolite CNO	Reversible activation of arrestin signaling	Nakajima and Wess, 2012

Activating G-Protein Coupled Receptors

During the past 20 or more years, a number of tools have been developed that allow for the reversible activation of G-protein coupled receptors (GPCRs) (Table 1) (Conklin et al., 2008; Rogan and Roth, 2011). These have been various dubbed

FOTALARYLEVTINTILYN	WLALL & (ASSAMNMELLVISEDRY
10 20	10 20
ACHI ERI FUTANGA YLEVTYNCTLYW	THE WEAL AND A CAMPANY AND A CAMPACTURE OF A
ACML MAS FOTANDA PYLPVTVNCTLVN	MJ_HamWEALLY /ABMA/IVMNLLLISTORY
ACHI MOU FOTANDA PYLPVTVNCTLVN	DHI_MOUWLALDTVASHASVMMLLLISFORT
ACML_DIG FSTAMPA PYLPVTVMCTLVM	DI_pigWLALGYVASHASVMMLLLISTORY
ACML huFGTARO A FYLEVTVNCTLVN	MI_hwWLALDY/ASMASVMMLLLIFTORY
ACMS BOV FOTAL AFYRPYTINTILYN	313 BOY MERITY ASHASYMMER, VERYORY
ACM3 BAT FOTALAA YMPYTINTILYN	243_RATWLDIIY FASHASVMULLVISFORY
ACM3 HUM FOTALAA YYMPVTINTILYW	DO_HUMALAIDY/ASHASVMULLVISFORY
ACMN HOU FGTALAA YMPVTIMTILYN	NOURLOID RASHASYMMLLVISTORY
ACM3 FAN FGTALMAFYHFYTINTILYN	N3_PARWLAIDY/ASHASWMULVISTORY
ACR3 FIGFGTALAA YMPVTINTILYM	343_PIGWL#ITYVASHASVMMLLVISFORY
ACH3 FOM FSTALLA YMPYTINTILYM	20 FOR MEY LLANSHIP VARIAN MULTALBEORA
ACHS GOM FOTALAA YMPVTINTILYM	DID_GOM-REALDY/ASHARVHILLVISFORY
AGM NAT FOTAL A PYLPSVINTVLVI	34 RATHLALDY PUBHADVHULLISPONY
ACH4 HOU FUTALIA PYLPSVINUVLVI	M4_MOUWLALGYPVBHASVBBLLIISPDRY
ACM HUM FGTALIA YLPSVINTVLYI	204_HINGKLALI Y PVINIARVMULLI ISPENY
ACMS NATIFITALIA TIPUTVHILLYC	DCS_RATWLALDY VABIDARYMBILLVIRFORY
ACMS HAGIFGTALFARVIEVEVHILLYC	DIS_HACINLALDY/ASINABVMULLVISIENY
AGNS_MOUTOTALIA PVIPUSVHTILVC	INS_NOU WLALOY VASIDASVIBILLVISFORY
AGNS_EUM FGTAL/AFYIPVEVNTILYC	345_HINGMLALOYVABNARVABILLVISFORY
ACM2 FIG FSTALLAFYLPVIINTVLYN	342_FIGWLALDY /VENASVMBILLIISFORY
ACHI MOU FSTAINA TIPVIINIVIY	202_MOO WLALI Y FVBNDARVMBILLI I SFORY
ACM2 EUM FGZAIJA YILPVIINIVLVW	N2 HIMRLALDY VENASVIBILLISFERY

Figure 2. Point mutations essential for creation of DREADD receptors. Shown are the locations of the two-point mutations (Y149C^(3,33), A239G^(5,46)) that are conserved residues within all acetylcholine muscarinic receptors, including *Drosophila*.

"allele-specific genetically engineered receptors" (Strader et al., 1991); "receptors activated solely by synthetic ligands" (RASSLs) (Coward et al., 1998); "engineered receptors" (Westkaemper et al., 1999); "therapeutic receptor–effector complexes" (TREKs) (Small et al., 2001); "neoceptors" (Jacobson et al., 2001); and "designer receptors exclusively activated by designer drugs" (DREADD) (Armbruster et al., 2007). Among these variations on the theme of engineered GPCR–ligand pairs, DREADDs have emerged as the most frequently used tool for remotely controlling neuronal signaling. This chapter focuses on the specific application of DREADD technology.

Designer Receptors Exclusively Activated by Designer Drugs – DREADDs

DREADDs were originally invented by modifying muscarinic acetylcholine receptors to be activated by the inert ligand clozapine-*N*-oxide (CNO) via directed molecular evolution in genetically engineered yeast (Armbruster et al., 2007). In the process, two-point mutations of highly conserved amino acids (Y3.33C and A5.46G via the Ballesteros and Weinstein numbering convention; Ballesteros and Weinstein, 1995) rendered all 5 human muscarinic receptors both unable to be

Table 2. Representative experiments using DREADDs to modulate behavior by remote cell-type-specific control of neuronal signaling

DREADD	Experiment	Result	References
hM_3D_q +/- hM_4D_i	Remote control of feeding	Identification of neurons that encode hunger	Krashes et al., 2011; Atasoy et al., 2012
hM_3D_q	Generation of a synthetic memory trace	Memory encoded sparsely	Garner et al., 2012
hM ₄ D _i	Alteration in neuronal plasticity	Altered striatal connectivity	Kozorovitskiy et al., 2012
hM ₄ D _i	5-HT neuron silencing	Behavior and physiological consequences	Ray et al., 2011
hM ₃ D _q	Identification of neurons responsible for pleasurable sensation	DRG neurons identified as target of MGPR4 orphan receptor	Vrontou et al., 2013
G _s D	Modulation of cAMP	Modulates circadian clock	Brancaccio et al., 2013

activated by acetylcholine (their endogenous agonist) and exquisitely sensitive to CNO (Fig. 2).

To date, DREADDs suitable for remotely activating the designer receptors G_i (e.g., hM_4G_i) (Armbruster et al., 2007), G_q (e.g., hM_3G_q) (Armbruster et al., 2007), G_s (e.g., G_sD) (Guettier et al., 2009) and arrestin (e.g., Arr-DREADD) (Nakajima and Wess, 2012) signaling have been reported. These are activated using the pharmacologically inactive compound and clozapine metabolite CNO and have been extensively validated (Table 1). In all neuron types reported to date:

- Activation of the hM₃D_q by CNO induces neuronal depolarization and burst firing (Alexander et al., 2009; Krashes et al., 2011; Atasoy et al., 2012);
- Activation of hM₄D_i by CNO induces neuronal hyperpolarization and silencing (Armbruster et al., 2007; Krashes et al., 2011; Atasoy et al., 2012);
- Activation of G_sD by CNO enhances neuronal Gs signaling (Brancaccio et al., 2013; Farrell et al., 2013); and
- CNO has no effect on baseline firing (Alexander et al., 2009; Krashes et al., 2011; Atasoy et al., 2012) or signaling in neurons not expressing DREADDs (Brancaccio et al., 2013; Farrell et al., 2013).

(There have been no reports on the utility of the arrestin-specific DREADD for remotely controlling neuronal arrestin signaling.)

The mechanism(s) responsible for these alterations in neuronal activity are unknown. However, the hyperpolarization of neurons and inhibition of firing by hM_4D_i is likely caused in part by the activation of G-protein inwardly rectifying potassium channels (Armbruster et al., 2007). To date, a large number of investigators have reported success in using DREADD technology to selectively modulate neuronal signaling and firing (Table 2).

Pros and Cons of DREADD Technology

DREADDs are now widely used in neuroscience to remotely control neuronal signaling. DREADDs offer the following advantages over other, more invasive technologies such as optogenetics:

- They are able to noninvasively control neuronal and nonneuronal signaling, as CNO can be administered peripherally via injection (Alexander et al., 2009) or through drinking water (D.J. Urban and B.L. Roth, unpublished observations) (protocols available at http://dreadd.org/);
- They can modulate signaling and activity of widely dispersed neurons (Garner et al., 2012);
- They can modulate signaling and activity of optically inaccessible neurons (Vrontou et al., 2013);
- They can be used to modulate activity of neurons early in development in a noninvasive manner (Kozorovitskiy et al., 2012);
- They are appropriate for long-term studies (e.g., days to weeks) (Farrell et al., 2013); and
- CNO-modulated activity can last hours after a single injection (Alexander et al., 2009).

The main disadvantage DREADD technology as compared with optical technologies is the lack of precise, millisecond control of activity. Although it is likely that "caging" CNO is possible (B.L. Roth, unpublished observations) so that millisecond control can be achieved by photochemically uncaging CNO, optical technologies will likely remain the most useful under conditions in which precise millisecond control of neuronal activity is needed.

NOTES

NOTES

Summary

DREADD technology has emerged as a facile approach for remotely and noninvasively controlling neuronal and nonneuronal signaling. CNO-induced activation of hM_3D_q triggers neuronal burst firing and, accordingly, hM_3D_q is frequently used to remotely activate neurons. The activation of hM_4D_i by CNO can silence neurons and, accordingly, hM_4D_i is frequently used to remotely inactive neuronal activity. The development of additional DREADDs, as well as DREADDs that selectively activate distinct downstream effectors, will greatly expand our ability to remotely control and interrogate neuronal signaling in both health and disease.

References

- Alexander GM, Rogan SC, Abbas AI, Armbruster BN, Pei Y, Allen JA, Nonneman RJ, Hartmann J, Moy SS, Nicolelis MA, McNamara JO, Roth BL (2009) Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63:27–39.
- Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA 104:5163–5168.
- Atasoy D, Betley JN, Su HH, Sternson SM (2012) Deconstruction of a neural circuit for hunger. Nature 488:172–177.
- Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In: Methods in neurosciences (Sealfon SC, Conn PM, eds), pp 366–428. San Diego, CA: Academic Press.
- Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268.
- Brancaccio M, Maywood ES, Chesham JE, Loudon AS, Hastings MH (2013) A gq-ca(2+) axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus. Neuron 78:714–728.
- Conklin BR, Hsiao EC, Claeysen S, Dumuis A, SrinivasanS,ForsayethJR,GuettierJM,ChangWC, Pei Y, McCarthy KD, Nissenson RA, Wess J, Bockaert J, Roth BL (2008) Engineering GPCR signaling pathways with RASSLs. Nat Methods 5:673–678.

- Coward P, Wada HG, Falk MS, Chan SD, Meng F, Akil H, Conklin BR (1998) Controlling signaling with a specifically designed Gi-coupled receptor. Proc Natl Acad Sci USA 95:352–357.
- Crick FH (1979) Thinking about the brain. Sci Am 241:219–232.
- Crick F (1999) The impact of molecular biology on neuroscience. Philos Trans R Soc Lond B Biol Sci 354:2021–2025.
- FarrellMS,PeiY,WanY,YadavPN,DaigleTL,UrbanDJ, Lee HM, Sciaky N, Simmons A, Nonneman RJ, Huang XP, Hufeisen SJ, Guettier JM, Moy SS, Wess J, Caron MG, Calakos N, Roth BL (2013) A Galphas DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology 38:854–862.
- Garner AR, Rowland DC, Hwang SY, Baumgaertel K, Roth BL, Kentros C, Mayford M (2012) Generation of a synthetic memory trace. Science 335:1513–1516.
- Guettier JM, Gautam D, Scarselli M, Ruiz de Azua I, Li JH, Rosemond E, Ma X, Gonzalez FJ, Armbruster BN, Lu H, Roth BL, Wess J (2009) A chemical-genetic approach to study G protein regulation of beta cell function *in vivo*. Proc Natl Acad Sci USA 106:19197–19202.
- Jacobson KA, Gao ZG, Chen A, Barak D, Kim SA, Lee K, Link A, Rompaey PV, van Calenbergh S, Liang BT (2001) Neoceptor concept based on molecular complementarity in GPCRs: a mutant adenosine A(3) receptor with selectively enhanced affinity for amine-modified nucleosides. J Med Chem 44:4125–4136.
- Kokel D, Cheung CY, Mills R, Coutinho-Budd J, Huang L, Setola V, Sprague J, Jin S, Jin YN, Huang XP, Bruni G, Woolf CJ, Roth BL, Hamblin MR, Zylka MJ, Milan DJ, Peterson RT (2013) Photochemical activation of TRPA1 channels in neurons and animals. Nat Chem Biol 9:257–263.
- Kozorovitskiy Y, Saunders A, Johnson CA, Lowell BB, Sabatini BL (2012) Recurrent network activity drives striatal synaptogenesis. Nature 485:646–650.
- Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS, Maratos-Flier E, Roth BL, Lowell BB (2011) Rapid, reversible activation of AgRP neurons drives feeding behavior. J Clin Invest 121:1424–1428.

- Lechner HA, Lein ES, Callaway EM (2002) A genetic method for selective and quickly reversible silencing of mammalian neurons. J Neurosci 22:5287–5290.
- Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H, Hegemann P, Landmesser LT, Herlitze S (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci USA 102:17816–17821.
- Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398.
- Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100:13940–13945.
- Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of *Caenorhabditis elegans* triggers rapid behavioral responses. Curr Biol 15:2279–2284.
- Nakajima K, Wess J (2012) Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor. Mol Pharmacol 82:575–582.
- Ray RS, Corcoran AE, Brust RD, Kim JC, Richerson GB, Nattie E, Dymecki SM (2011) Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science 333:637–642.
- Rogan SC, Roth BL (2011) Remote control of neuronal signaling. Pharmacol Rev 63:291–315.
- Small KM, Brown KM, Forbes SL, Liggett SB (2001) Modification of the beta 2-adrenergic receptor to engineer a receptor-effector complex for gene therapy. J Biol Chem 276:31596–31601.
- Srinivasan S, Vaisse C, Conklin BR (2003) Engineering the melanocortin-4 receptor to control G(s) signaling *in vivo*. Ann NY Acad Sci 994:225–232.
- Strader CD, Gaffney T, Sugg EE, Candelore MR, Keys R, Patchett AA, Dixon RA (1991) Allelespecific activation of genetically engineered receptors. J Biol Chem 266:5–8.

- Vrontou S, Wong AM, Rau KK, Koerber HR, Anderson DJ (2013) Genetic identification of C fibres that detect massage-like stroking of hairy skin *in vivo*. Nature 493:669–673.
- Westkaemper R, Glennon R, Hyde E, Choudhary M, Khan N, Roth B (1999) Engineering a region of bulk tolerance into the 5-HT_{2A} receptor. Eur J Med Chem 34:441–447.
- Zemelman BV, Lee GA, Ng M, Miesenbock G (2002) Selective photostimulation of genetically chARGed neurons. Neuron 33:15–22.
- Zemelman BV, Nesnas N, Lee GA, Miesenbock G (2003) Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc Natl Acad Sci USA 100:1352–1357.
- Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639.

NOTES